[ 12/7 2/7 ] -6/7 |-> -4/7 |-> -2/7 |-> 2/7 10/7 |-> 12/7 -10/7 |-> 2/7 -12/7 |-> 12/7 f(z) = -49/48*z^3 + 31/12*z + 1 * [ -3/4 7/8 ] -5/8 |-> -1/4 |-> -3/8 |-> -3/4 -1/2 |-> -3/4 f(z) = -32/3*z^3 + 37/6*z + 1 * [ 5/4 -1/4 3/4 ] 0 |-> 1 |-> 3/4 1/4 |-> 5/4 -3/4 |-> 3/4 -1 |-> 5/4 f(z) = -4/3*z^3 + 13/12*z + 1 * [ -1 4/3 ] 0 |-> 1 |-> 2/3 |-> 4/3 -1/3 |-> 2/3 -2/3 |-> 2/3 1/3 |-> 4/3 f(z) = -3/2*z^3 + 7/6*z + 1 * [ -3/4 ] -5/4 |-> -1/4 |-> 1/4 |-> 7/4 |-> -3/4 -1 |-> -3/4 f(z) = -4/3*z^3 + 37/12*z + 1 * [ -5/2 -3/2 ] [ -1/2 ] 1/2 |-> 5/2 |-> 7/2 |-> -5/2 -2 |-> -5/2 f(z) = -1/3*z^3 + 37/12*z + 1 * [ -5/2 -7/2 ] -4 |-> -1 |-> -3/2 |-> -5/2 5 |-> -5/2 0 | 0.030075618260862100738484406263034136718 | 0.0068831621926512274683253736603538576378 1 | 0.090225550503878863486959524790857152116 | 0.020649188078291602143871428168865368719 f(z) = -2/15*z^3 + 79/30*z + 1 * [ -10 4 11 ] 0 |-> 1 |-> 4 9 |-> 4 -6 |-> -10 -5 |-> -10 -4 | 0.089434827108855643218390334613444906297 | 0.019826560100053864283362425848517644750 f(z) = -1/30*z^3 + 91/30*z + 1 * [ -5/2 11/4 1 ] 1/4 |-> 0 |-> 1 -11/4 |-> 1 f(z) = 8/15*z^3 - 121/30*z + 1 * [ 0 1 1/6 2/3 ] -3/2 |-> 0 5/6 |-> 0 f(z) = 6/5*z^3 - 61/30*z + 1 * [ -7/3 1 ] 1/3 |-> -1/3 |-> 7/3 |-> 1 4/3 |-> -8/3 |-> -7/3 5/3 |-> -7/3 0 |-> 1 f(z) = 3/4*z^3 - 49/12*z + 1 * [ 1 -1/3 5/3 ] [ 1/3 ] 4/3 |-> 0 |-> 1 -5/3 |-> 1 f(z) = 3/4*z^3 - 25/12*z + 1 * [ -1 3 ] 2 |-> -2 |-> 4 |-> 3 0 |-> 1 |-> -1 -3 |-> 3 -4 |-> -1 f(z) = 1/6*z^3 - 13/6*z + 1 * [ 2 ] 3/2 |-> 0 |-> 1 |-> -1/2 |-> 2 1/2 |-> 0 -2 |-> 0 -3/2 |-> 2 f(z) = 2/3*z^3 - 13/6*z + 1 * [ 12/5 -6 -2/5 ] 22/5 |-> -28/5 |-> 12/5 6 |-> 12/5 28/5 |-> -2/5 2/5 |-> -2/5 f(z) = 5/48*z^3 - 211/60*z + 1 * [ -4 6 ] 2 |-> -2 |-> 4 |-> -4 10 |-> 6 -6 |-> 6 -10 |-> -4 f(z) = 1/48*z^3 - 19/12*z + 1 * TOTAL: 16