A SOLUTION TO EXERCISE 8.16 OF DYNAMICS IN ONE NON-ARCHIMEDEAN VARIABLE

ROBERT L. BENEDETTO

Abstract. Exercise 8.16 of my Dynamics in One Non-Archimedean Variable book asks for a proof of Theorem 8.15(f), that the (Berkovich space) boundary of the filled Julia set of a polynomial coincides with its Julia set. The proof is pretty hard, though, so here’s a sketch.

Let \(\phi \in \mathbb{C}_{v}(z) \) be a rational function of degree at least 2. The Berkovich filled Julia set of \(\phi \) is

\[
K_{\phi,an} := \{ \zeta \in \mathbb{P}^1_{an} : \lim_{n \to \infty} \phi^n(\zeta) \neq \infty \}.
\]

Theorem 8.15(f) of Dynamics in One Non-Archimedean Variable states the following:

Theorem 8.15(f). Let \(\phi \in \mathbb{C}_{v}(z) \) be a rational function of degree at least 2, with Berkovich Julia set \(J_{\phi,an} \) and Berkovich filled Julia set \(K_{\phi,an} \). Prove that \(J_{\phi,an} = \partial K_{\phi,an} \).

In the book I punt the proof to Exercise 8.16, saying the proof is “slightly different” from the type I analog that appears as Proposition 5.27. But that’s quite misleading; the proof is significantly harder than that of Proposition 5.27. So here is a sketch of a proof, using ideas that appear the proof of Theorem 9.5, which includes a proof of a more general statement about attracting Fatou components.

Proof. As in Proposition 5.27, there is some \(R > 0 \) so that if we set \(V_0 := \mathbb{P}^1_{an} \setminus \overline{D}_{an}(0,R) \), then \(\phi(V_0) \subseteq V_0 \), with \(\phi^n(\xi) \to \infty \) for all \(\xi \in V_0 \).

For each \(n \geq 1 \), define \(V_n := \phi^{-n}(V_0) \), which is a single connected open affinoid, since all \(d^n \) preimages of \(\infty \) are \(\infty \) itself. Since \(\phi(V_0) \subseteq V_0 \), we have \(V_0 \subseteq V_1 \subseteq V_2 \subseteq \cdots \). Thus,

\[
K_{\phi,an} = \mathbb{P}^1_{an} \setminus V, \quad \text{where} \quad V := \bigcup_{n \geq 0} V_n.
\]

In particular, \(V \) is an open set (and is easily seen to be connected), \(K_{\phi,an} \) is closed, and they have the same boundary \(\partial V = \partial K_{\phi,an} \).

To show \(J_{\phi,an} = \partial K_{\phi,an} \), the inclusion (\(\subseteq \)) is easy, as follows. We have \(V_0 \subseteq \mathcal{F}_{\phi,an} \) since \(\phi(V_0) \subseteq V_0 \) and \(V_0 \) is open. Therefore, by Proposition 8.2(b), we have \(V \subseteq \mathcal{F}_{\phi,an} \); taking complements yields \(\partial K_{\phi,an} \supseteq J_{\phi,an} \).

Next, a short Lemma:

Lemma. Let \(\xi \in \partial K_{\phi,an} \).

1. If \(\xi' \in \mathbb{P}^1_{an} \setminus \{ \xi \} \) lies between \(\xi \) and \(\infty \), then \(\xi \in V \).
2. \(\phi(\xi) \in \partial K_{\phi,an} \).

(The proof of the Lemma is quick and left to reader.)
The rest of the proof of the Theorem is devoted to proving that $\partial K_{\phi,an} \subseteq J_{\phi,an}$. Given a point $\zeta \in \partial K_{\phi,an}$ and an open set W containing ζ, we must show $\bigcup_{n \geq 0} W$ omits only finitely many points of \mathbb{P}^1_{an}.

If ζ is of type II or III, let C_0 be the closed disk corresponding to ζ. Then there is a slightly larger open disk W_0 such that the annulus $W' := W_0 \setminus C_0$ is contained in W.

Otherwise, i.e. if ζ is a point of type I or IV, then there is an open disk W_0 with $\zeta \in W_0 \subseteq W$. Let $W' := W_0$ in this case.

In either case, let ζ' be the unique boundary point of the disk W_0. For each $n \geq 1$, define $W_n := \phi^n(W_0)$ and (in the type II or III case) $C_n := \phi^n(C_0)$.

Since each W_n is an open disk, ϕ is a polynomial, and $\zeta \in W_0$, a quick induction shows that for every $n \geq 0$, we have:

- $\phi^n(\zeta) \in W_n$;
- in the type II and III case, $C_n \subseteq W_n$, with $\partial C_n = \{\phi^n(\zeta)\}$;
- $\phi^n(W')$ is either W_n (with one boundary point $\phi^n(\zeta')$) or else $W_n \setminus C_n$ (with two boundary points, $\phi^n(\zeta)$ and $\phi^n(\zeta')$).

The disk W_0 is an open neighborhood of $\zeta \in \partial K_{\phi,an}$, and hence it contains points of V, which approach ∞ under iteration. On the other hand, every W_n contains $\phi^n(\zeta) \in K_{\phi,an} \subseteq \overline{D}_{an}(0,R)$. Thus, there is some $N \geq 0$ such that for every $n \geq N$, we have $W_n \supseteq \overline{D}_{an}(0,R)$. We consider three cases.

Case 1. There exists $m \geq N$ such that $\phi^m(W') = W_m$. (This case includes the case that ξ is of type I or IV.) Since the boundary points $\phi^n(\zeta')$ approach ∞, it follows that

$$\bigcup_{n \geq 0} \phi^n(W) \supseteq \bigcup_{n \geq m} \phi^n(W') = \bigcup_{n \geq m} W_n = \mathbb{A}^1_{an},$$

and hence W is not dynamically stable, as desired.

Case 2: We are not in Case 1, but there exist $\ell > m \geq N$ such that $\phi^\ell(\zeta) \neq \phi^m(\zeta)$. By the Lemma, neither of $\phi^\ell(\zeta)$ nor $\phi^m(\zeta)$ lies between the other and ∞, and hence the two closed sets C_ℓ and C_m are disjoint. It follows that $\phi^\ell(W') \cup \phi^m(W') = W_\ell$.

Therefore, as in Case 1, we have

$$\bigcup_{n \geq 0} \phi^n(W) \supseteq \bigcup_{n \geq m} \phi^n(W') = \bigcup_{n \geq \ell} W_n = \mathbb{A}^1_{an},$$

and again W is not dynamically stable.

Case 3: Finally, assume neither Case 1 nor Case 2 arises. Thus, ξ is of type II or III, and for all $n \geq N$, we have $\phi^n(\zeta) = \phi^N(\zeta)$, and $\phi^n(W') = W_n \setminus C_N$. Then $\xi := \phi^N(\zeta)$ is a fixed point of ϕ.

Let u be the direction at ξ towards ∞, and let $m := \deg_{\xi,u}(\phi)$ be the local degree of ϕ in that direction. Then there is an open disk disk $D_{an}(b,t)$ containing ξ (and hence C_N) small enough that ϕ has Weierstrass degree m on the open set $U := D_{an}(b,t) \setminus C_N$ extending from ξ in the direction u. If $m = 1$, then since ϕ is a polynomial fixing ξ, we have $\phi(U) = U$, and hence $\phi(D_{an}(b,t)) = D_{an}(b,t)$. Therefore all points of $D_{an}(b,t)$ remain bounded under iteration of ϕ, contradicting the fact that $\xi \in \partial K_{\phi,an}$.

By this contradiction, we must have $m \geq 2$. Thus, ξ is a repelling fixed point; by Theorem 8.7, it is of type II (not that we need that here) and lies in $J_{\phi,an}$, as desired. □